1.仪器基本情况
仪器名称:超高灵敏度电感耦合等离子体发射质谱仪
设备编号:1806064S
厂家:美国Thermo Fisher
型号:Thermoscientific iCAP RQ
2.主要用途
可以测定超痕量元素和同位素比值,功能主要是对地质、材料、陶瓷、环境、食品、地表水等样品中的有害无机元素(如锑、钡、铍、硼、钼、钴、镍、钒、铊、钛等元素)和元素形态(如砷元素、硒元素的形态)快速分析与测定。
3.仪器硬件
3.1 为了能够在碰撞或反应模式中引入质量筛选功能以实现更有效的多原子离子干扰去除效果,实现对复杂基体样品的准确分析,提供的产品具有两套可实现质量筛选功能的四极杆。
★3.1.2 雾化器:提供具有耐高盐雾化器,以适应用户对不同样品前处理的需求。
★3.1.3 雾化室:为了减少基体溶剂的引入量,抑制多原子离子干扰物的产率,同时消除温度波动对稳定性的影响。产品标配具有半导体制冷功能的小体积旋流型雾化室,制冷能力-10℃至-20℃。
3.1.4 蠕动泵:最高可调转动速度100rpm(每分钟100转)的四通道蠕动泵系统,以加快样品的引入和冲洗速度,使仪器具有更高效率的分析能力,同时保证更强的进样拓展能力;泵体采用惰性材质制造,防止酸液滴落对滚轮的腐蚀。
3.1.5 炬管:采用无需手动连接等离子气,辅助气气路的卡式推入炬管设计,以方便日常更换维护且避免多次维护导致的漏气现象;可配置多种口径中心管的分体式石英炬管,用以降低炬管的后期使用成本;
3.1.6 中心管:可拆卸式中心管设计,方便用户针对不同样品类型选择并更换合适尺寸的中心管。
3.1.7 等离子体可视系统:具有等离子体可视功能,可以实时通过电脑显示器监控等离子体及锥口和中心管的状态,便于及时判断仪器是否需要维护。方便将ICPMS主机与控制电脑分开放置的用户直接通过控制电脑观察仪器运行情况并进行参数优化
★3.1.8 接口:接口部分的设计应兼顾保护分析腔真空度和耐盐两个方面,避免采用对分析腔真空度有明显影响的大锥孔设计,同时配有不损失样品灵敏度的接口耐盐设计,可在高灵敏度情况下实现对25%盐度样品的连续稳定分析;
3.1.9 仪器主机的气路部分均采用高精度的质量流量计控制(包括等离子部分气路和碰撞反应池部分气路)
3.1.10 离子源: 为获得更高的解离通道温度,提高样品离子化效率,仪器采用27.12 MHz工作频率驱动的自激式全固态RF发生器;功率范围400-1600W连续可调,调节精度0.5W;发生器具有快速匹配功能的变频技术;
3.1.11 具有工作线圈和接口的二次放电消除功能,采用无需屏蔽炬设计的虚拟接地技术,保证仪器最佳性能的同时减少不必要的消耗品——屏蔽炬;
3.1.12 正交离子偏转聚焦系统:该系统应具备两个功能:
★3.1.12.1 为避免分析腔内碰撞反应池和质量分析器的样品沉积,仪器应在接口后部配置一套正交离子偏转聚焦系统,通过电场作用将样品离子与未解离的中性粒子和光子进行90°分离,以降低仪器背景噪音。中性粒子和光子应通过分子泵排出而无需采用任何挡板技术阻挡,避免后期对该系统的维护,提供仪器设计和分离原理图。
3.1.12.2 该系统应具备抑制离子束展宽的功能。可在系统内形成三维电场分布,保证样品离子在偏转的同时实现三维方向的离子束压缩,抑制空间电荷效应带来的展宽提高样品离子的传递效率。
3.1.13 四极杆碰撞反应池:
3.13.1 池内或池的前端具有一套可进行质量筛选功能的四极杆结构设计。针对不同的被测元素,可通过控制软件分别自动给出相应元素所需的质量筛选区段,更好的去除二次多原子离子干扰或反应副产物;
3.1.13.2 池内可使用标准模式(STD模式)、碰撞模式(KED模式)和反应模式(CCT模式)进行干扰的消除和样品分析,每种模式都可通过平面四极杆设置带宽进行质量数的区段筛选以达到更优异的干扰消除效果;
3.1.13.3 碰撞模式可使用He气,H2He混合气, NH3He混合气;反应模式可使用O2气,H2气,NH3气及其混合气
3.1.13.4 池体应具备碰撞聚焦功能,保证碰撞模式下的高灵敏度分析,并可获得238U≥1000Mcps/ppm的高灵敏度水平。
3.1.14 DA透镜:为了消除因碰撞或反应过程中由于电荷转移而二次产生的中性粒子,保证仪器具有极限背景噪音,样品离子在通过碰撞反应池后可被DA透镜进行离轴偏转,将池内可能产生的二次中性干扰消除。
★3.1.15 四极杆质量分辨器:纯Mo材料的长杆结构设计,提供双曲面电势场保证最佳的质量轴分辨率、丰度灵敏度;采用2.0MHz低频驱动四极杆,以获得更宽的质谱分析范围和更优异的质量轴稳定性;
3.1.16 四极杆具有可调分辨率功能,可以在同一方法中针对不同元素进行不同分辨率的设定,要求在一次样品测试中,四极杆在不同分辨率下自动切换;
★3.1.17 质谱范围:2-290amu,以满足多原子离子团测定需要。
3.1.18 脉冲模拟双模式同时型电子倍增器两种模式可以自动切换,必须可以在一次进样过程中同时完成扫描和跳峰分析(定性和定量分析),电子倍增器可对 <0.1cps或 >109cps的信号进行计数且两种模式分析过程中的驻留时间可达0.1ms。
3.1.19 等离子体炬位调整: 由计算机控制步进电机进行三维(X,Y, Z 方向)位置控制,步长调节精度0.05mm,参数存储于计算机软件中;
3.1.20 仪器应能够使用500W的冷等离子体进行样品分析,进行冷焰分析时无需使用屏蔽炬亦可保证冷等离子体的稳定工作及信号的灵敏度。要求在一次样品分析中能自动切换冷焰模式和标准模式,保证样品中所有分析元素(在二种不同模式中)一次进样完成分析。标准模式下无需使用碰撞反应池或冷焰技术,即可保证56Fe的方法检出限符合国际水质分析标准小于3ppb的要求。
3.1.21 要求同时具有氧气碰撞反应池技术,在同一个方法中可同时通入氧气和氦气,通过氧气的反应性,把P、S元素反应到PO47,SO48位置,并获得由于0.01ppb和0.9ppb的检出限。
3.1.22 对于高Cl样品(5% HCl,200ppm Ca)中As元素的分析无需使用繁琐的O2气反应模式,可直接利用碰撞模式去除干扰并获得0.4ppt的检出限水平。
3.1.23 可以通过碰撞模式直接消除Ar Ar+多原子离子对Se元素的干扰,无需使用甲烷或纯H2气的反应模式即可获得优于3ppt的检出限。
3.1.24 仪器配置元素形态分析联机用的硬件接口以及软件。包含色谱连用的瞬间信号分析软件。可以满足色谱连用中的数据采集,色谱积分计算,报告输出等功能。
3.1.25 仪器应对高盐度样品具有良好的耐受性,配备气溶胶稀释套装,可以实现对盐度超过25%的饱和食盐水样品的进行长时间的稳定分析。
3.1.26 使用一套工作站系统,可以同时控制ICP-MS和离子色谱,可用于元素形态学分析,可以满足仪器连用中的实时操作,数据采集,积分计算,报告输出等功能。具有实时数据显示和实时报告显示。与色谱技术联用的控制软件以及数据处理软件,在同一界面下完成,不需切换色谱软件;如可通过ICPMS软件控制色谱仪器,设置梯度洗脱时间等。
★3.1.27可实现超低含量的Cr3+和Cr6+形态检测,对于Cr6+可达到0.5ppt的检出限能力。
3.2 操作电脑及软件:
3.2.1 仪器操作电脑:性能优良商用电脑, Microsoft ® Win7或更高版本 ,多任务,多用户系统软件。
3.2.2 数据图形综合处理电脑: 性能优良电脑,至强E5-2630V4 10核2.2GHz处理器,32G内存,2T硬盘,M4000-8G显卡。
3.2.3 全自动分析功能(启动关闭仪器 ,炬位调整, 等离子体参数, 离子透镜, 标准等离子体条件与冷等离子体条件切换,标准技术与碰撞池技术切换等)
3.2.4 包含色谱连用的瞬间信号分析软件以便与色谱或激光进样系统等连用。可以满足色谱连用中的数据采集,色谱积分计算,报告输出等功能。
3.2.5 实时数据显示,和实时报告显示。
4. 仪器性能要求
4.1 标准模式下灵敏度,该仪器性能参数应与仪器安装验收参数相同。
4.1.1 低质量数(Li): > 54Mcps/ppm
4.1.2 中质量数(Y或In): > 230Mcps/ppm
4.1.3 高质量数(Tl或U): > 320Mcps/ppm
4.2 标准模式下(No Gas)随机背景:<1 cps (4.5amu),He 模式随机背景:<0.5 cps (4.5amu)
4.3 标准模式下,仪器信噪比>220M(1ppm中质量元素溶液,灵敏度/随机背景)
4.4 仪器检出限
4.4.1 轻质量元素:<0.5ppt
4.4.2 中质量数元素:<0.1ppt
4.4.3 高质量数元素:<0.1ppt
4.5 短期稳定性 10min (RSD): < 2% 。
4.6 长期稳定性 2 hr(RSD): < 3% 。
4.7 质谱校正稳定性: < 0.025 amu/24hr
5. 仪器位置
国重实验设备公共平台216室
6. 仪器管理员
吴云娣,19989664682,wuyundi@hainanu.edu.cn
办公室:南海海洋资源利用国家重点实验室203室
委燕,19808992679,993798@hainanu.edu.cn
办公室:南海海洋资源利用国家重点实验室307室
7.预约测试相关信息
7.1 工作日送样测试,具体可预约时间、收费标准详见海南大学大型仪器共享服务平台系统。
预约地址:https://yiqi.hainanu.edu.cn/home/#/orderDetail?id=983
7.2 本仪器对上机样品要求高,建议有兴趣了解和使用的同学老师,务必事先直接联系管理员确认测样需求和样品预处理流程是否适于本仪器。
7.3 需自备的物品:标准溶液、内标溶液、2-5%硝酸或超纯水(用于仪器冲洗、样品间清洗等,至少需要200mL)、滤纸。单次多元素分析,上机样品准备量至少5mL。(以手动进样计)
1. Basic Information of the Instrument
Name: Ultra-High Sensitivity Inductively Coupled Plasma Emission Mass Spectrometer
Serial Number: 1806064S
Manufacturer: Thermo Fisher
Model Number: Thermoscientific iCAP RQ
2. Usage
It can determine the ultra-trace element-isotope ratio, mainly for the harmful inorganic elements in samples of geology, materials, ceramics, environment, food and surface water (such as antimony, barium, beryllium, boron, molybdenum, cobalt, nickel, vanadium, thallium and titanium) and the elemental forms (such as the forms of arsenic and selenium).
3. Hardware
3.1.1 In order to be able to introduce a mass screening in the collision or reaction mode for more effective polyatomic ion interference removal effect and to achieve accurate analysis of complex matrix samples, the provided product has two sets of quadrupoles that can realize the mass screening.
★3.1.2 Nebulizer: Babington nebulizer is provided to suit the users’ needs for different sample pretreatment.
★3.1.3 Nebulization Chamber: In order to reduce the amount of matrix solvent introduced, suppress the yield of polyatomic ion interferers, and to eliminate the effect of temperature fluctuations on stability, the product is equipped with a small volume cyclonic nebulization chamber with semiconductor cooling capability of -10°C to -20°C.
3.1.4 Peristaltic Pump: The four-channel peristaltic pump system with a maximum adjustable rotation speed of 100 rpm can speed up the introduction and flushing of samples, increasing the analysis capability while ensuring a stronger sample feeding expansion capability. The pump body is made of inert material, which can prevent corrosion of the rollers by acid drops.
3.1.5 Torch Tube: The use of the push-in torch tube design without manual connection of plasma gas and auxiliary gas circuit can facilitate daily replacement and maintenance and avoid gas leakage caused by multiple maintenance. The demountable quartz torch tube equipped with central tubes of a variety of calibers can reduce the use costs.
3.1.6 Central Tube: The detachable central tube can make it convenient for users to select and replace appropriate tubes for different samples.
3.1.7 Plasma Visualization System: With the function of plasma visualization, the plasma and the status of the conical entry and central tube can be monitored in real time through the computer monitor, which is convenient to determine whether the instrument needs maintenance in time. It is convenient for users who place the ICPMS mainframe separately from computer to observe the instrument operation and optimize the parameters directly through the computer.
★3.1.8 Interface: The design of the interface should consider both the protection of the vacuum of the analytical chamber and salt resistance, avoiding the use of a large cone hole design that has an obvious impact on the vacuum of the analytical chamber. At the same time, it is equipped with a salt-resistant interface that does not lose sample sensitivity, allowing continuous and stable analysis of 25% salinity samples at high sensitivity.
3.1.9 The gas circuit of the main body of the instrument is controlled by a high-precision mass flow meter (including the gas circuit of the plasma part and the gas circuit of the collision reaction cell part).
3.1.10 Ion Source: In order to obtain a higher dissociation channel temperature and improve the efficiency of sample ionization, the instrument uses a self-excited solid-state RF generator driven by 27.12 MHz operating frequency; power range from 400w to 1,600w continuously, and the adjustment accuracy is 0.5W; the generator has been applied with frequency conversion technology which can match fast.
3.1.11 It can eliminate the secondary discharge from the working coil and interface. It uses virtual grounding technology without shielding torch, which ensures the best performance of the instrument while reducing unnecessary consumables that is the shielding torch.
3.1.12 Orthogonal Ion Deflection Focusing System: The system should have two functions:
★3.1.12.1 To avoid sample deposition in colliding reaction cells and mass analyzers of the analytical chamber, the instrument shall be equipped with an orthogonal ion deflection focusing system at the rear of the interface, which separates sample ions from undissociated neutral particles and photons by 90° through the action of an electric field so as to reduce instrument background noise. The neutral particles and photons should be discharged through the molecular pump without any baffle technique to avoid later maintenance of this system.
3.1.12.2 The system should have the function of suppressing ion beam spreading. It can form a three-dimensional electric field in the system to ensure that the sample ions are deflected while achieving three-dimensional directional ion beam compression and suppressing the spreading caused by space charge effect to improve the sample ion transfer efficiency.
3.1.13 Quadrupole Collision Reaction Cell:
3.13.1 The cell or the front end of the cell has a set of quadrupole structures designed to perform mass screening. For different elements under test, the required mass screening zones for the corresponding elements can be automatically given by the control software respectively to better remove secondary polyatomic ion interference or reaction by-products.
3.1.13.2 The pool can be used in STD mode, KED mode and CCT mode for interference elimination and sample analysis, and each of them can be set up with a bandwidth for mass number screening by a planar quadrupole to achieve better interference elimination.
3.1.13.3 The collision mode can use He, H2He and NH3He; the reaction mode can use O2, H2, NH3 and their mixtures.
3.1.13.4 The pool should have a collision focus function to ensure high sensitivity analysis in collision mode, and can obtain 238U ≥ 1000Mcps/ppm high sensitivity level.
3.1.14 DA Lens: In order to eliminate the neutral particles generated twice due to charge transfer during the collision or reaction, and to ensure that the instrument has the limit of background noise, the sample ions can be deflected off-axis by the DA lens after passing through the collision reaction cell, and the secondary neutral interference that may be generated in the cell will be eliminated.
★3.1.15 Quadrupole Mass Filter: the long rod structure of pure Mo material provides hyperbolic electric potential field to ensure the best mass axis resolution and abundance sensitivity; quadrupole driven by 2.0MHz low frequency is used to obtain wider mass spectrometry analysis range and better mass axis stability.
3.1.16 The quadrupole has adjustable resolution function, which can be set for different resolutions for different elements in the same method, requiring automatic switching of the quadrupole at different resolutions in one sample test.
★3.1.17 Mass Spectral Range: 2-290amu can meet the needs of multi-atomic ionophore determination.
3.1.18 The two modes pf pulsed analog and electron multiplier mode can be automatically switched and can be able to complete the scanning and peak-hopping analysis (qualitative and quantitative analysis) simultaneously during a single sample injection. The electron multiplier can be counted for <0.1cps or >109cps signal and the duration of the two modes can be up to 0.1ms.
3.1.19 Plasma Torch Position Adjustment: The computer controls stepper motor for three-dimensional (X, Y, Z direction) position control, during which the step adjustment accuracy is 0.05mm and the parameters are stored in the computer software.
3.1.20 The instrument should be able to use 500W cold plasma for sample analysis, and the cold flame analysis can be performed without using a shielded torch to ensure the stable work of the cold plasma and the sensitivity of the signal. It is required to automatically switch between cold flame mode and standard mode in one sample analysis to ensure that all the analyzed elements in the sample (in two different modes) can be analyzed in one injection. Standard mode without the use of collision reaction cell or cold flame technology can ensure that the method detection limit of 56Fe in line with international water quality analysis standards is less than 3ppb.
3.1.21 The instrument requires both oxygen collision reaction cell technology. In other words, oxygen and helium can be imported into the instrument in the same method. Through the reactivity of oxygen, the P and S elements can be reacted in the PO47 and SO48 position, obtaining the detection limit due to 0.01ppb and 0.9ppb.
3.1.22 For the analysis of elements in high Cl samples (5% HCl, 200 ppm Ca) without using the cumbersome O2 reaction mode, the collision mode can be used directly to remove the interference and obtain a detection limit level of 0.4ppt.
3.1.23 The interference of Ar+ polyatomic ions with Se elements can be directly eliminated by the collision mode, and detection limits better than 3 ppt can be obtained without using the reaction mode of methane or pure H2 gas.
3.1.24 The instrument is equipped with hardware interfaces and software for on-line analysis of elemental forms, including the software for instantaneous signal analysis for chromatography linkage. It can meet the data acquisition, chromatographic integration calculation, report output and other functions in chromatography on-line.
3.1.25 The instrument has good tolerance to high salinity samples and is equipped with an aerosol dilution kit, which can achieve stable analysis of saturated saline samples with salinity over 25% for a long time.
3.1.26 The use of a workstation system can control ICP-MS and ion chromatography simultaneously for elemental morphology analysis, which can meet the functions of real-time operation, data acquisition, integral calculation, and report output in instrument connection. The instrument can display real-time data and real-time report. The control software and data processing software used in conjunction with chromatography technology can be completed under the same interface without switching chromatography software. For example, the chromatography instrument can be controlled by ICPMS software and the gradient elution time can be set.
★3.1.27 The instrument can achieve ultra-low content of Cr3+ and Cr6+ morphology detection. For Cr6+, it can reach 0.5ppt detection limit capability.
3.2 Operating Computer and Software:
3.2.1 Computer for Instrument Operation: high-performance commercial computer, Microsoft ® Win7 or higher version, multi-tasking and multi-user system software.
3.2.2 Computer for Data Graphics Integrated Processing: good performance computer, XEON E5-2630V4 10-core, 2.2GHz processor, 32G memory, 2T hard disk, M4000-8G graphics card.
3.2.3 Fully automatic analysis functions (turn on and turn off the instrument, torch position adjustment, plasma parameters, ion lenses, switching between standard plasma conditions and cold plasma conditions, switching between standard technology and collision cell technology, etc.)
3.2.4 Instantaneous signal analysis software for chromatography interfacing with chromatography or laser injection systems, etc. It can meet the functions of data acquisition, chromatographic integration calculation, report output, etc. in chromatography connection.
3.2.5 Real-time data and real-time report display.
4. Performance Requirements
4.1 As to the sensitivity in standard mode, the instrument performance parameters should be the same as the instrument installation and acceptance parameters.
4.1.1 Low mass number (Li): > 54Mcps/ppm
4.1.2 Medium mass number (Y or In): > 230Mcps/ppm
4.1.3 High mass number (Tl or U): > 320Mcps/ppm
4.2 Standard mode (No Gas) random background: < 1 cps (4.5amu), He mode; random background: < 0.5 cps (4.5amu)
4.3 Standard mode, the instrument signal-to-noise ratio > 220M (1ppm in mass element solution, sensitivity/random background)
4.4 Instrument Detection Limit
4.4.1 Light mass number elements:<0.5ppt
4.4.2 Medium mass number elements: <0.1ppt
4.4.3 High mass number elements: <0.1ppt
4.5 Short-term stability 10min (RSD): < 2%.
4.6 Long-term stability 2 hr(RSD): < 3%.
4.7 Mass spectrometry calibration stability: < 0.025 amu/24hr
5. Place
Room 216 of Public Platform for Experimental Instruments of State Key Laboratory of Marine Resources Utilization in the South China Sea (MRU)
6. Administrators
Yundi Wu, 19989664682, wuyundi@hainanu.edu.cn
Office: Room 203, MRU
Yan Wei, 19808992679, 993798@hainanu.edu.cn
Office: Room 307, MRU
7. Reservation
7.1 The samples are sent for testing on working days. The specific appointment time and charges can be seen in Hainan University Large Instrument Sharing Service Platform System.
Address: https://yiqi.hainanu.edu.cn/home/#/orderDetail?id=983
7.2 This instrument has high requirements for samples, so it is recommended that students and teachers who are interested in understanding and using this instrument must contact the administrators directly to confirm whether the sample requirements and sample pre-processing process are suitable for this instrument.
7.3 Items should be brought by teachers or students: standard solution, internal standard solution, 2-5% nitric acid or ultrapure water (for instrument rinsing, sample room cleaning, etc., at least 200 mL), and filter paper. For a single multi-element analysis, the sample preparation volume should be at least 5 mL (based on manual injection).